
Making a Software Defined Radio for the
QRP Enthusiast—Part II

Ward Harriman—AE6TY ae6ty@arrl.net

48 · Spring 2010 The QRP Quarterly www.qrparci.org/

In the previous issue we discussed development of the hardware
for a self-contained (no PC) SDR radio. Here, we’ll explore the

development of the first workable software to be used on this
hardware. I’m going to do something a little unusual in the article.
I’m going to describe some things that worked AND some things
that DIDN’T work. I do this for two reasons. First, the goal of this
paper is to encourage the reader to learn through experimentation
and even failed experiments teach us something. Second, I hope
to save you some grief by showing where “obvious” approaches
turn out to be harder than I expected.

Before delving in, I’d like to point out that my SDR project is
a work in progress. If you go look at my schematics or my PC
board layouts or my source code (all of which are on the QRP
Quarterly website), things are rather haphazard. You are not going
to be seeing a completed project with assembly instructions and
parts lists and code documented to commercial standards. Indeed,
the software in particular is the coding equivalent of “ugly con-
struction.” My hope is that by providing all this information you
will be able to poke around and see how I solved any particular
problem. Please recognize that I didn’t set out to build a world-
class rig, I set out to build a usable rig and to explore an emerging
technology. I hope what follows will encourage you to do the
same.

As for the rest of this article, I won’t be describing all of the
inner workings of my software. Rather, I hope to explain some of
the main problems I ran into and how I went about solving them.
Some of these problems were logistical and needed only a modest
effort to solve once identified. Other problems took me a while to
understand and solve in my own modest ways. I expect this pro-
ject to continue more or less forever. I guess it is my own version
of “the Unfinished.”

Microchip IDE
As described in the previous article, this project uses a dsPIC

processor from Microchip. One of the big reasons for choosing
this processor family was the software development environment
provided (free) by Microchip. This environment runs on a stan-
dard windows platform. It is called an “Integrated Development
Environment” because it provides every tool necessary to write
and debug programs for the entire microchip processor family. It
provides a basic text editor and an assembler and C compiler.
Once the code has been written and compiled, the IDE provides a
linker and a comprehensive “standard library” of subroutines
familiar to C programmers. (For those less familiar with pro-
gramming, it is common practice to provide calls within a pro-
gram to common subroutines. The linker and compiler ensure that
the code for these common subroutines is included as a part of the
software package, thus saving the programmer from having to
write these common functions into his/her code.)

Once a program has compiled and linked it is downloaded to
the target hardware. Once downloaded, the IDE allows the devel-
oper to monitor and modify the various program variables and

hardware registers using symbolic names. Program execution can
be controlled using breakpoints and single stepping at either the C
or assembly code level.

During programming and debug, the IDE controls the proces-
sor using hardware called an “In Circuit Debugger”; Microchip
calls their debugger the ICD3. The ICD3 connects to the comput-
er using a USB interface and to the target processor using a four-
wire interface. This ICD3 allows the IDE to control the processor
directly on a clock tick by clock tick basis. The ICD3 is designed
specifically for the Microchip product family and supports essen-
tially any Microchip processor. (It is useless for other vendors’
products.) The ICD3 costs about $190 from Microchip but there
are compatible modules available on the web for less. The ICD3
represents an investment which can be used in a large variety of
projects. I consider it as essential to my workbench as my ‘scope
and signal generator.

A very quick glance at the IDE screen may prove informative.
Figure 1 shows a screen shot of the IDE which was taken during
a typical debugging session. The largest window is called
“main.c” and shows the actual source code. The dot on the left
hand side of the window shows that a breakpoint is installed at
that line. When the processor reaches that line it will halt and
repaint all the windows.

To the right of the “main.c” window are three smaller win-
dows. One monitors program variables which are allocated in
memory, one monitors “local” variables which are available only
in that specific subroutine and one monitors processor hardware
registers. After hitting the breakpoint the developer can change
variables, single step, proceed to the next breakpoint or even
change the code and recompile; all without invoking any tools
outside the IDE. It is truly an Integrated Development

Figure 1—The Integrated Development Environment display
screen.

www.qrparci.org/ The QRP Quarterly Spring 2010 · 49

Environment.
The Microchip tutorials for the IDE are fairly comprehensive

and demonstrate the basic capabilities quite well. Those interest-
ed in exploring how the IDE can be used can download it, again
for free, from www.microchip.com. The basic IDE download does
not include the C compiler tool suite; that is an independent (but
still free) download.

Getting Started: Divide and Conquer
The first step in writing any fairly ambitious piece of code is

to divide the problem into manageable pieces. For this project I
ended up dividing the effort into three more or less distinct pieces
that interact in very limited and well-defined ways. Just as with
hardware, software modules require specified interfaces so that
the modification of one module does not impact the operation of
any other modules. To the extent possible, each module should
“hide” its internal complexity and provide a simple to understand
and use interface.

Also, just as with hardware designers, programmers develop
particular styles which are followed unthinkingly. There are obvi-
ous “style” characteristics such as how they format their pro-
grams, where they put their comments, how they name their vari-
ables and how they perform trivial tasks. There are hidden char-
acteristics as well, things such as how the source code is arranged
and how the programming style simplifies or complicates the
debugging process.

I mention all these style issues because they actually make a
huge difference to the developer in the long run. Remember: soft-
ware, almost by definition, is never finished. You may think you’ll
remember how you structured all the code but in a few months
you will probably forget a great deal. Being consistent about how
you perform routine tasks will allow you to “come up to
speed”much faster once you decide to add a feature or debug a
problem several months from now.

A final note: when writing code one should remember most
programs are not critical and need only provide basic functionali-
ty. Most code should not be clever because “clever” often trans-
lates to “obtuse.” Generally speaking, code which was difficult to
write will have more bugs and be more difficult to repair.
Straightforward and consistent coding techniques yield working
code in a shorter time and with fewer bugs along the way.

So, without further ado, let’s get started. The three major
pieces of code I had to write I call:

• The board support package which directly controls the hard-
ware.

• The user interface which fields button pushes and controls
the display.

• The SDR piece which processes data from and delivers data
to the CODEC.

Board Support
The board support package is the very first piece of software

written for any project. The various subroutines are responsible
for initializing the hardware and providing low level “idealized”
interfaces to the rest of the software. Let’s use the I2C (or I2C) bus
master inside the dsPIC as an example:

The board support package must initialize the I2C interface

that is used to monitor and control the CODEC and non-volatile
memory chips. The initialization of this interface is quite straight-
forward and requires only a few lines of code.

Once the I2C interface is initialized it is ready to write control
commands and read status from the various devices connected to
the I2C bus. The I2C bus protocol is implemented in software and
requires a few dozen lines of code. The board support package
hides these low level details by providing two subroutines that can
be called by other programs: write and read. Because there can be
multiple devices connected to an I2C bus, the write and read sub-
routines require a device ID. Additionally, the I2C bus protocol
provides for the writing and reading of multiple bytes of data in a
single operation. This means that the write and read routines will
need to accept a length argument as well. Here is an example of
how a call to the I2CWrite routine might be appear:

I2CWrite(50,10,"sample string",13);

This call requests that 13 ASCII characters be written to
device 50 starting at address 10. In this example, the 13 characters
are specified using a quoted string “sample string.” (The space
between the words in quotes counts as one ascii character.) A pos-
sible read string routine might look like this:

I2CRead(50,10,buffer,12);

As expected, this routine would read 12 bytes of data from
device 50, starting at address 10 and place the string into “buffer.”
So you get the idea; each piece of hardware will require some
minimal initialization and a few other subroutines which allow
other programs to access the hardware. Once these routines have
been written they can be used without regard to their inner work-
ings. If there is one word which describes the purpose of these low
level subroutines it is this: Abstraction!

Let’s return to the general discussion. A quick overview of this
project’s hardware yields the following list. Some of these ele-
ments are pretty obvious while others are less so. For example, it
is clear that the DDS will need some kind of control. It is less clear
that the processor clock rate will need setting. In most cases a
review of the appropriate datasheets will yield a more or less com-
plete list of the subsystems which need attention. In many cases,
the vendor will even provide sample code for setting up and exer-
cising a particular feature.

• Processor stack and memory initialization (provided by
Microchip).

• Processor clock rate
• Processor Timers
• I2C interface
• I2S interface
• DDS control interface (no status from DDS)
• Keypad polling interface
• Knob 'interrupt on change' interface
• CODEC control/status interface
• Nonvolatile memory (NV ram)
• QSD control register support
• Power Amplifier control register support
• CW Key input

50 · Spring 2010 The QRP Quarterly www.qrparci.org/

The amount of work involved with each of the above hardware
subsystems varied widely. Some subsystems required a few min-
utes while others required an hour or two. Please note that I am a
fairly experienced programmer and these time estimates are for
me. For those beginning the journey that is programming, the time
estimates are surely short. However, programming these types of
routines is a skill quickly learned and after an evening or two the
newcomer will be writing initialization code fluently.

The writing of the initialization code is often done more or less
in parallel with debugging the hardware. Each part of the hard-
ware is initialized and small test programs are written to verify
proper hardware initialization, verify proper operation and verify
proper understanding of the hardware functionality. Generally,
these test programs morph into the subroutines provided for gen-
eral use by the upper level software.

Each of the above subsystems was addressed as time and
desire dictated. The majority of the board support package was
written in a few weeks of spare time. Of course, as with all pro-
grams, the board support package continued to evolve as under-
standing and usage grew. Often times a subroutine needed to be
rewritten when it became clear that it did not provide the correct
functionality. For example, in the I2C routine above, the initial
subroutines provided reading and writing single bytes. While pro-
gramming other routines it became clear that reads and writes
always required multiple bytes. Rather than call “I2CReadByte”
multiple times it was easier to change I2CReadByte into
I2CReadBlock.

Once all the subsystems have been initialized and debugged it
was time to move on to the next phase, the user interface. But
first…

Details of Microchip C
All this user interface stuff was going to be written in a high

level language called “C.” C is very widespread and there are
countless books concerning how to program using “C.” While C
is a “standard,” there are differences in how C works on different
processors. Table 1 shows the differences in the version used by
Microchip for the dsPIC product family, particularly as it applies
to describing the menus I used with the SDR. Those readers not
familiar with C programming (or perhaps a bit rusty) are encour-
aged to read the sidebar to this article, “A ‘C’ Primer: Describing
a Menu.” [see Notes]. The Microchip tutorial, available on their
website, also shows how C can be used to program the dsPIC.

The User Interface
I really didn’t pay much attention to the user interface early in

this project. However, after only a few evenings it became clear
that the user interface was going to be a big effort and would
require a certain amount of planning. This was a bit discouraging
because I was really trying to get some Digital Signal Processing
work done. Still, a little planning and a good foundation would
make subsequent development move faster and be less frustrating.

A few programming sessions trying to control the CODEC and
DDS quickly taught me most of what I needed to have in a user
interface. First, I expected that I would need to control, at most, a
few dozen parameters so a simple list was adequate; no menus and
sub-menus to complicate things. Second, in most cases, the
parameter was simply a number which needed to be adjusted.

Also, that number always had a “minimum” value and a “maxi-
mum” value. I decided that all parameters would be adjusted
using a knob and so each parameter would need an “increment”
value; how much should the parameter change when the knob is
turned. And of course, other portions of the software needed to be
told that the parameter had been changed. For example, here is the
declaration describing the parameter freq:

struct parameter freq =
{ "freq",

14000000,
14000000,
14349999,
50,
ddsUpdateFreq

};

Of course, there will be many parameters. I decided to group
the parameters together into an array. C allows me to declare an
array of parameters in much the same way as a simple parameter
and initialize that array. Let’s jump to the first real menu I had to
write. In this menu I had to control the frequency of the DDS and
the gain of the amplifiers in the CODEC chip. The CODEC chip
has an amplifier before the A->D converter and I call this “rfgain.”
It also has an amplifier after the D->A converter and I call this
“afgain.” The registers inside the CODEC that control the gain of
these amplifiers can take on values from -63 to 63. Notice that I
don’t specify the size of the uMenu array (empty []). C figures out
how big uMenu is by counting the size of the initializing data!

struct parameter uMenu[] =
{

{"freq", 14000000,14000000,14349999,50,ddsUpdateFreq},
{"afgain", 0, -63, 63, 1,codecUpdateAFGain},
{"rfgain", 0, -63, 63, 1,codecUpdateRFGain}

};

Table 1.

www.qrparci.org/ The QRP Quarterly Spring 2010 · 51

After all this work I had the framework for describing the
menu in my SDR. With a small amount of effort, I could now
introduce a new menu item and have the user interface software
display the parameter values, modify them, and let the rest of the
software know that the parameter value had changed. But so far I
had only described the menu, I had not yet written any code.

Implementing the User Interface
Once the structure for the menu had been defined it was time

to start writing some code. The first code I had to write was a pro-
gram which would control the ascii display. This display is 16
characters wide and 4 lines long. Since there would be more than
4 parameters in the menu I had to have a way to specify which
menu item should be displayed on each line. To keep track of this
I introduced an array called:

// which menu element is on which line.
long menuLines[] = {0,1,2,3};

Thus, to start out, menu element 0 would be displayed on the
top line of the ascii display and menu element 3 would be on the
bottom.

Next, I had to write a routine which would detect knob move-
ments and modify the appropriate menu items. I chose to have
four knobs, one for each line of the display. Each knob would con-
trol whichever parameter was displayed on the associated line.
Each time a knob was turned the software would have to perform
a series of actions. For example, when knob 0 was turned clock-
wise the software would examine the menuLines[0] entry to find
out which parameter was being modified. It would then look into
the menu array and find that parameter and update the value by
adding the increment. It would then make sure the new value was
between the minimum and maximum. Finally, it would call the
callOnUpdate function and show the new parameter value on the
display.

Whew!
There was one final requirement before I could get started on

the real SDR software: there had to be a way to choose which
parameters would be displayed on which lines of the display. In
the first instance of this code I tried to make this simple. The
knobs have built in buttons. I changed the knob code a little to
check to see if the button was being pushed while it was turned. If
the knob was being pushed then the software changed the value in
the menuLines array rather than the parameter itself. Thus, by
pushing knob 0 while turning it clockwise I would increment the
variable menuLines[0] rather than the parameter. In that way I
could select the parameter to be displayed rather than the param-
eter itself.

Enhancements
At this point I had a more or less workable user interface and

could get back to work on my real goal which was the digital sig-
nal processing code. Before discussing that, though, a few more
things need to be said about the user interface.

Above I described the FIRST cut at the user interface. It has
been much enhanced since those humble beginnings but almost all
enhancements have been cosmetic; better formatting of displayed
lines and the ability to display the value as a word (like “USB” or

“LSB”) were significant efforts. I changed around how the param-
eters for display are chosen and how the knob operates providing
dynamic increments instead of fixed increments.

After using the rig for some time I added two more important
features. The first was to introduce the keypad so I could key in
numbers directly; frequency is by far the most common parame-
ter directly keyed. At first it seemed a waste to have a keypad for
one parameter but other uses have been found.

The second feature I added to the user interface was full sup-
port for the non-volatile (NV) ram, a small, 8 pin memory device
connected to the I2C bus. The NV ram is updated automatically
every time a parameter is changed. “Non-volatile” implies that
this memory holds the values in it when power is lost. It is diffi-
cult to describe how pivotal this was without experiencing it.
Consider what life was like before the NV ram was supported.
During operation I would make various parameter changes and
occasionally I’d find a problem. I would go modify the program
and recompile and download the new version. However, the
parameters that I had chosen which caused the problem would be
reset by this reload of the program. Then I would have to re-
adjust the parameters hoping that I could remember how they had
been set before I started fixing the problem. It was a very tedious
process.

Once I had provided support for the NV ram, life was much
easier. Upon encountering a problem I would simply fix the pro-
gram (or hardware), reload the program and restart it. The param-
eters would be restored to their previous values. It was much eas-
ier to determine if the fix had indeed fixed the problem. At this
point, I was truly ready to start the DSP part of the project.

Digital Signal Processing
It is finally time to get to work on the Signal Processing code.

In the first cut at this software, the signal processing code runs “at
the interrupt level” which means that each time the CODEC com-
pletes an A-to-D conversion the processor will be interrupted. The
processor will stop what it is doing, read in the A-to-D conversion
data, process that data and deliver new data to the D-to-A con-
verter which drives the headphones.

In this project, samples to and from the CODEC are 16 bits
numbers. In dsPIC C, a 16 bit number is called a “short.” The
CODEC samples represent fixed point, fractional numbers in the
range -1<sample<1. Here’s a new C trick. You can tell C that
when you say “A” you really mean “B.” Now there’s no real rea-
son to do this except that we’d like to keep track of when we’re
talking about a CODEC sample and when we’re talking about a
16 bit integer. We do this by telling C that “fractional” really
means “short”:

typedef short Fractional;

So from now on, we can write “Fractional” and mean “short.”
Of course, the CODEC provides a sample of the I and a sam-

ple of the Q at the same time and we’re probably going to want to
deal with I/Q pairs. In mathematics, an I/Q pair would be called a
complex number and we’d like to deal with complex numbers as
single units. We’ve already seen how this is done; the “struct.” We
can combine the two forms and write:

52 · Spring 2010 The QRP Quarterly www.qrparci.org/

typedef struct
{

Fractional i;
Fractional q;

} Complex;

In other words, when I declare a variable as “Complex” I mean
it is a bucket with two Fractionals which are, of course, really
shorts. So I can write:

Complex FromCODEC;

Oh, and of course, I can write the outgoing variables:

Complex ToCODEC;

We’re getting close here. In C, I need to write a subroutine
which will be called each time the CODEC produces a new sam-
ple. I’ll brush over exactly how the routine gets called and just call
it “CODECinterrupt.” We will now write our first C program.

Without undue explanation, the following is the declaration of
a subroutine which is called every time the CODEC generates a
pair of new samples. This routine will simply take the data from
the CODEC and hand it back. This is the equivalent of connecting
the headphones directly to the QSD down converter. Figure 2
shows a 1 kHz signal passing through the SDR using this code.

(Please note that there is lots of “hash” on the signals you will see
here. My workbench environment is very noisy and the daemons
have been too numerous to exorcise completely.)

void CODECinterrupt() //"void" means this subroutine
returns nothing.

{
Complex Tmp; //a temporary holding place.

Tmp = FromCODEC; //get data from CODEC
ToCODEC = Tmp; //send data on to CODEC

}

Please take a look at Figure 2 on the left hand side. (We’ll see
lots of dual trace pictures from now on.) On the left hand side of
Figure 2, the one trace is the “I” channel and one trace is the “Q”
channel. Note that the “I” channel is ahead of the “Q” channel. In
this system, this indicates a time when the frequency of interest is
above the local oscillator. If the local oscillator were 14.002 MHz
then the “Q” channel would lead the “I” channel as seen on the
right hand side of FIgure 2. Some people would call this a “nega-
tive frequency,” but don’t get hung up on that term just yet. There
are other things to explore right now.

Step One: Opposite Side Band Suppression
One of the true joys of any hobby is the chance to sit back and

Figure 2—A 1 kHz signal passing through the SDR (no processing).

Figure 3—A 1 kHz signal with one channel delayed 900.

Figure 4—I and the derivative (slope) of
Q for 1 kHz signal.

Figure 5—Sum and difference of I and
slope of Q for 1 kHz.

www.qrparci.org/ The QRP Quarterly Spring 2010 · 53

try some things and ponder the results. Unlike a practicing engi-
neer plagued with deadlines and budgets, the amateur can try
some things and learn from the experiments. Even a failure is a
lesson because it shows us when our understanding is incom-
plete. Knowing when we don’t understand is important because
then we won’t proceed in false confidence. One reason for this
whole project was to provide a way to try some experiments.
Let’s try one now.

In order to increase the usefulness of the rig and to reduce the
amount of QRM and QRN, I decided to eliminate the “opposite
sideband.” To do this, the literature suggests using a “Hilbert
Transform” because forming the Hilbert transform of a signal is
equivalent to adding a 90 degree phase shift to all components of
the signal, thus setting the groundwork for generating an SSB sig-
nal via the phasing method. I didn’t really want to just do things
“by the book”; I wanted to try some of my own ideas. So I ignored
the literature and did a little thinking. In looking at Figure 2, I saw
that what I really wanted to do was to delay one of the two chan-
nels by another 90 degrees. Figure 3 shows the results. Note that
when the signal frequency is below the local oscillator the I and Q
channels are essentially the same and when the signal is above the
local oscillator the two channels are opposite.

Now if the signals are added together the “lower” sideband
would be selected because the two channels are in phase. The
“upper” sideband, however, would have no signal because the two
channels are opposite. This is the essence of “opposite sideband
rejection using the phasing technique.”

The question is how to delay a signal by 90 degrees. For sim-
ple sine waves, delaying a signal by 90 degrees is just like “tak-
ing the slope” or “taking the derivative.” So I wrote a little pro-
gram like this: I keep three copies of the incoming samples. Then
I simply computed the “slope” of one of the channels; here I take
the slope of the Q channel. (NOTE: I needed to keep the delay of
the two channels the same so I had to delay I by one and take the
slope using the “fromCODEC” and an “oldoldCODEC.” It is
worth playing around with this to convince oneself that this is
correct.)

Complex oldCODEC;
Complex oldoldCODEC;

void CODECinterrupt
{

toCODEC.i = oldCODEC.i; //match delay.
toCODEC.q = (oldoldCODEC.q - fromCODEC.q)*scale;

oldoldCODEC = oldCODEC;
oldCODEC = fromCODEC;

};

Note that I slipped in a “scale” factor. In my experiment, I sim-
ply declared a new parameter in the uMenu and viola! Figure 4
shows the results. The two traces are essentially co-incident.
Honestly, this looks pretty good. Figure 5 shows the result of the
“addition”; one trace being the sum and the other being the dif-
ference. I confess I had to tune the “scale” variable to give the best
answer.

What happens if I change the frequency? Figure 6 shows a
scan of “I” and “Qslope” amplitude as a function of frequency.
Notice how the two traces cross at 1000 Hz. That is where I tuned
“scale” to eliminate the opposite sideband. At frequencies other
than 1000 Hz, though, this technique really won”t eliminate the
opposite sideband well at all. If I had a really narrow filter right
after this simple circuit, it is possible this might work. Although
not shown, I’d like to point out that at other frequencies the
“Qslope” phase is still correct, it is only the “scale” that is wrong
because it needs to change with frequency.

An Unexpected Imperfection
OK; back to the Hilbert Transform; no real surprise. Figure 7

shows the I and the Hilbert Transform of Q as a function of fre-
quency. (In Part III of this article, we will talk about how the
Hilbert Transform is computed. For now, just assume that we can
generate the transform and apply it as shown to our incoming sig-
nal samples.) Again, I did some tuning for 1000 Hz. Note that the
Hilbert Transform does much better over a wider range but still
has a few problems. Examine the two traces closely. At the very
left margin, the trace heading down is the Hilbert Transform. This
is a well-known shortcoming; The Hilbert Transform has trouble
at frequencies near zero. Now look toward the right hand side of
Figure 7. Notice that the two traces are diverging. As it turns out,
this is unexpected; the Hilbert transform should work well at the

Figure 6—I and slope of Q as a function
of frequency.

Figure 7—I and Hilbert Transform of Q
as a function of frequency.

Figure 8—Sum and difference of I and
Hilbert Transform of Q.

54 · Spring 2010 The QRP Quarterly www.qrparci.org/

higher frequencies. It often helps to look at the problem in a dif-
ferent light. Figure 8 shows the same data but with the one trace
as the addition and the other trace as the difference.

Figure 8 shows that the Hilbert transform does much better
than my simple slope detector but problems remain. Near the
1000 Hz, point the Hilbert transform performs better than my
equipment’s ability to measure. Away from 1000 Hz though,
things are different. If you were to listen to this rig on the air you
would hear opposite sideband signals. They would be faint but
you would definitely hear them. This rig, so far, is suppressing the
opposite sideband by only 20 to 25 dB well away from the tuned
frequency.

This is clearly unacceptable. The question I asked was WHY
this was happening. There were four options: the Hilbert trans-
form did not work as I expected, I coded the transform incorrect-
ly, the CODEC was not digitizing correctly or finally, the QSD
board wasn’t working correctly.

I decided to find out if the problem was my implementation of
the Hilbert Transform. My first step was to write a program which
would generate a sine wave of a chosen frequency. This routine
would be needed later anyway so now was a good time. I decided
to write a routine called “ejm” which would return a complex
number with a real part=cos(m) and an imaginary part=-sin(m). I
could then use this “ejm” routine to generate a (more or less) per-
fect input signal with which to test my Hilbert transform. (The
interested reader can find the code for “ejm” in my source code.)
Here was my test code:

long BeepInc;
long BeepPhase;
Complex In, Tmp, S;

BeepPhase = BeepPhase + BeepInc; //advance generated
phase

In = ejm(BeepPhase); // get an 'I' and a 'Q'
Tmp.i = Hilbert(In.i); //Hilbert transform of I
Tmp.q = MatchHilbertDelay(In.q); //"Hilbert" delays

'i'… delay 'Q' to
match.

S.i = Tmp.i + Tmp.q; //sum

S.q = Tmp.i - Tmp.q; //difference.
ToCODEC = S; //send it out!

Figure 9 shows the result. It is clear that the Hilbert Transform
I had written was not the problem.

So the first step in examining this problem was to provide for
adjusting the relative amplitudes and phases of the incoming
I & Q channels. Common wisdom says this isn’t necessary for the
Quadrature Sampling Detector I was using but I decided to put it
in anyway. The routine for adjusting amplitude and phase is fair-
ly simple. (Unfortunately, dsPIC C does not have a built in way to
multiply two Fractionals so I had to write a routine “fxf(fa,fb)”
which would do that multiplication.) The first step is to add the
menu elements:

{"AmpAdj", 0,-32000,32000,1,NULL},//no 'update routine'
so "NULL"

{"PhzAdj", 0,-32000,32000,1,NULL},//no 'update routine'
so "NULL"

Then, just after I get the incoming CODEC sample I wrote:

In = FromCODEC;
If (AmpAdj > 0) //should I reduce magnitude of 'I'

In.i = In.i + fxf(In.i,AmpAdj);
else

In.q = In.q + fxf(In.q,AmpAdj); //if not, reduce the
magnitude of 'Q'

In.i = In.i + fxf(In.q,PhzAdj); //adjust phase if necessary.

This code is pretty simple and playing with it is HUGELY
educational. Take a look at Figure 10. This picture shows the sum
and differences as we’ve seen earlier. The goal is to have the bot-
tom trace be “down in the noise.” As you can see, the lower trace
is down 35 dB or so. Pretty good. BUT by adjusting the AmpAdj
and PhzAdj parameters you can produce Figure 11; down around
60 dB! It is most educational to play with these adjustments. You
quickly find that you MUST adjust both amplitude AND phase to
maximize performance; no amount of adjusting phase will

Figure 9—Testing the Hilbert
Transform implementation.

Figure 10—Sum and difference without
adjustment factors.

Figure 11—Sum and difference with
adjustment factors.

www.qrparci.org/ The QRP Quarterly Spring 2010 · 55

account for differences in magnitude, nor vice-versa.
Having written that code I went and optimized the perfor-

mance at a half a dozen frequencies. Here’s what I found; as the
frequency went up the required AmpAdj and PhzAdj went down.
This represented a critical clue. If the AmpAdj was constant then
this would indicate a difference in gains of the two channels
would be the problem. If PhzAdj was constant then this would
represent a problem with the QSD mixer. (Note, I have since
learned that this view was overly simplistic.) Since both adjust-
ments changed as frequency changed, I was forced to conclude
there was a worse problem. Perhaps there was a difference in the
roll-off of the two channels either in the op amps or the QSD inte-
grating capacitors. If one channel rolled off faster than another
then this would account for my observations.

Yes, I should have gone and looked earlier, but I had read in
several places that differing rolloffs between channels was never
a problem. Well, I went and looked and saw what is shown in
Figure 12. On the left hand side, Figure 12 shows that the DC gain
of the two channels are essentially equal. Because of this, I con-
cluded that resistors used in conjunction with the amplifiers are
reasonably well matched. However, as the frequency increases the
gains diverge. Thus, the problem is in the roll-off of the two
amplifiers. I then went and looked up the data on the LT1636 op
amp I was using. It turns out the open loop gain of this device is
only about 30 dB at 6 kHz. My QSD board had set the op amp
gain to 40 dB. Thus, the op amp itself is rolling off roughly 10 dB
from 0 to 6 kHz; almost exactly what is showing in Figure 12. Yes,
I had to go change my op amps. Figure 13 shows the results after
I had replaced them. As you can see, things are much improved
but not yet perfect; notice how the bottom signal rises toward the
right of the trace. I suspect that this is an intrinsic property of QSD
mixers, their “conversion gain” rolls off with increased frequen-
cy; something to look into later.

In the end, I reached a fairly flat sideband rejection. Figure 14
shows a frequency sweep of the upper and lower sidebands. With
the exception of low frequencies, the opposite sideband rejection
is about 40 dB across a fairly wide band. About what one might
expect from fairly casual construction and coding.

Summary
So now my project has achieved a significant milestone. I

have a working hardware platform, a working user interface, I can
tune the receiver and I can select a sideband. However, the receiv-
er is still “wide open.” There is no narrow band filtering yet
implemented. When I started this journey, this is where I expect-
ed to be out of my element and where I would really start
researching and discovering. I was right.

In Part III of this article, I will show how that research and dis-
covery turned out. At that point, the software will be fully
described and the transceiver functional with an output of about
200 mV peak/peak. Part IV of this series will describe the class E
power amplifier used to boost this 200 mV signal to 5 watts.

Notes
The referenced sidebar, “A ‘C’ Primer: Describing a Menu,”

will be made available on the QRP ARCI web site when this arti-
cle is published.

References
1. Lyons, Richard G., Understanding Digital Signal

Processing, Second Edition, Prentice Hall, Upper Saddle River,
New Jersey, 2004.

2. Hayward, Campbell, Larkin, Experimental Methods in RF
Design, The American Radio Relay League, 2003.

3. Smith, Steven W., Digital Signal Processing—A Practical
Guide for Engineers and Scientists, Newnes, 2003.

Figure 12—Gain of the I and Q chan-
nels vs. frequency.

Figure 13—Gain of the I and Q chan-
nels with new op amps.

Figure 14—Sideband rejection after
new op amps and adjustment.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

