
Making a Software Defined Radio for
the QRP Enthusiast—Part III

Ward Harriman—AE6TY ae6ty@arrl.net

48 · Summer 2010 The QRP Quarterly www.qrparci.org/

In the last issue of this magazine, I began to describe the soft-
ware used in my self-contained (no PC) Software Defined

Radio (SDR). Major points of this description were the integrated
development environment, board support, user interface, and gen-
eration of a single sideband signal. At that point, the receiver
could be tuned and a sideband selected. However, the receiver still
lacked the filters necessary to a practical transceiver. A discussion
of the methods used to implement those filters and the things I
learned along the way toward that implementation will form this
part of my article.

There are many different ways to do filtering and even a cur-
sory discussion of the major players is beyond the scope of this
paper. For the purposes of this article I will describe two ways I’ve
implemented filtering. But before I describe how I did my filter-
ing, I’m going to need to describe two of the most fundamental
principles of Digital Signal Processing: Correlation and Fourier
Transforms. No… don’t stop reading… I’m going to try to present
each of these concepts in a very informal matter. I’ll gloss over all
of the math and all the nitty-gritty and try to show you this stuff
can be intuitive and very powerful………

In reading through the literature I often heard the terms “in the
time domain” and “in the frequency domain.” I have learned that
at best these terms are hints as to the view point of the author and
convention. In theory there is no difference between “time
domain” and “frequency domain” and that means you are free to
think about the problem in either way. Indeed, the only reason one
thinks “frequency” instead of “time” is one of convenience and
simplification. For example, if you are like me, you tend to think
of filters as working in the “frequency domain.” I think, “I want
to pass some frequencies and block others.” Thus, when thinking
about designing filters I want to think in “frequency.” However,
CODEC samples come periodically in “time,” and so when imple-
menting filters I may want to program in “time.”

This ability to work “in the frequency domain” is hugely pow-
erful. Now I’m going to exaggerate a little… I can say “remove
any 1 kHz component” and get exactly that. I can say “boost all
frequencies below 1500 Hz by 20%” and get exactly that. I can
say, “change the phase of the 750 Hz component of the signal.”
All these capabilities come from a single technology: the Discrete
Fourier Transform. But to get to the DFT you really need to start
with something I found even less familiar: correlation.

Now over the last few years I’ve tried to understand digital fil-
ters and how to explain them to others without using too much
math. What follows are my best attempts to date. I am going to
brush over some pretty important “secondary” effects. I do this
consciously so as to deliver the material in an intuitive and natu-
ral progression. As you read further on this topic you will no doubt
find critical details I have left out. When you do, please accept my
apologies. Let’s get started.

Correlation
What is “correlation”? Simply put, correlation is a method

used to measure similarities—“How alike are A and B?” Suppose

A and B are collections (arrays) of CODEC samples each 100
samples long. Suppose further that B is an array which was creat-
ed by sampling a 600 Hz signal. If I then compare A and B and
find them “very similar,” then I know there is a lot of 600 Hz sig-
nal in A. If they are not similar at all, then I know there isn’t any
600 Hz in A. The result of a correlation is a numeric value we’ll
call H. We’ll say H=1 if the A array looks exactly like the B array
and H=–1 if A is the negative of B. We’ll say H = 0 when A is
nothing like B. H can thus take on any value –1<H<1.

(NOTE: When writing about these issues it is convenient to
develop a terminology to simplify writing and reading. For exam-
ple, we will need to refer to arrays of numbers. When I want to
refer to the “B Array” I will write “B[]”… the “[]” can be read
directly as “Array.” When I want to talk about an array which con-
tains a signal with a specific frequency I’ll write “B(freq)[].” As
an example, “B(600)[]” is the “B Array containing 600 Hz.”
(Note that B(600)[] is not really a recording of a 600 Hz signal;
the contents of B(600)[] are computed using the sine or cosine
functions provided by Microchip.)

Correlation can be used to implement a filter. To do so, I com-
pare A to B to generate H. Correlation is very fast and I can com-
pute a new H every CODEC sample period. I can then send H
directly to the CODEC for output. Yes, directly. To see why, con-
sider the following. When the signals in A and B are both 600 Hz
and “in phase” then H will be a 1; A is equal to B. During the next
CODEC sample the phase of A[] will be different and A will look
“mostly like” B and so H will be somewhat less than 1. As time
progresses A will eventually look like the negative of B and H will
be –1. Again, time progresses and A will again look exactly like B
and H will be 1 again. In fact, H will cycle from 1 to –1 and back
to 1 at 600 Hz. Yep, a filter. A more in depth presentation of this
material can be found at http://www.ae6ty.com/Intro2SDR/
SDRnoMath.html.

Now just exactly how does correlation compare A to B? Well,
it is really quite simple. Correlation multiplies each element in A
by the corresponding element in B and then adds up the products.
Stated a little more succinctly:

H = SUM(A[i] x B[i]) for all i

We can write the program for correlation in C. Loops in C are
written using a “for” statement. For A[] and B[] arrays which are
100 elements long, we would write:

H = 0; //initialize our sum.
for (i=0;i<100;i=i+1) //for all i in A[] and B[]
H = H + A[i]*B[i]; //multiply and accumulate.

Now before we proceed I want to drive home how important
this is. Correlation allows me to compare two signals and get a
numerical figure of merit. This simple concept is the basis for
everything that follows.

“But,” you say, “Suppose I want a filter which passes more

www.qrparci.org/ The QRP Quarterly Summer 2010 · 49

than a single frequency? Suppose I’d like to pass frequencies 600
and 650?” Well, then we would do a correlation with B(600Hz)
and a second for B(650Hz) and then add the two together.
Thinking ahead you can see a problem: for a wide filter I’d need
to do a whole bunch of correlations and that sounds like a lot of
processing time and it WOULD BE but, of course, there is a short
cut.

Instead of performing a bunch of correlations and then adding
the results I could add the results along the way. I would write the
code:

H = 0;
for (i=0;i<256;i=i+1)

{
H = H + A[i]*B(600Hz)[i]; // 600 Hz.
H = H + A[i]*B(650Hz)[i]; // 650 Hz.

}

This reduces the loop overhead but it is still an awful lot of
multiplies. Fortunately, there is yet another simplification. I can
add all the B(600Hz)[] and B(650Hz)[] arrays together. After all,
high school algebra says that ab+ac=a(b+c) and so H = A*B +
A*C = A(B+C). We can call this new array F[] and make F[] =
B(600Hz)[] + B(650Hz)[]. Then instead of doing 2 multiplies
inside the loop we do one. (The F[] array is often called the “fil-
ter kernel” or “impulse response” in the literature.) Thus, the pro-
gram now looks like:

H = 0;
for (i=0;i<256;i=i+1)

{
H = H + F(600Hz)[i]; // F contains 600 and 650 Hz.

}

Further, F[] is simply the sum of all the B[] arrays of all the
signals we want to detect. If we want to detect 600 and 650 and
700 and 750 we simply add the B(600 Hz)[], B(650 Hz)[],
B(700 Hz)[] and B(750 Hz)[] arrays. Since the B[] arrays are
actually generated in software the entire F[] array can also be
generated in software. This means that any filter shape can be
implemented using the simple correlation routine shown above.
Thus, all filters will take the same amount of time to process. This
is very, very cool!

Oh and wait—remember all those weird filter cases we want-
ed, say notching or boosting? Well, we just take that into account
when generating F[] and we’re done. Really. Almost everything
else you’ll need to know about a basic DSP filtering is an opti-
mization on how to create F[] or perform the correlation faster or
make the correlation more precise. Here’s an example…

Fourier Transform
Now let’s think about the dreaded Fourier Transform. Early on

in this project my eyes glazed over and I thought, “Yah Yah, but
tell me how to do this stuff without Fourier Transforms,
PLEASE!” After all, all the books on the subject are filled with
integrals and talk about the Fourier Transform and how to imple-
ment it and how to make it fast and how clever the mathemati-
cians were… and they were clever.

But the engineers who design cars are very clever and most
drivers are not engineers. he same is true with Fourier Transforms;
you can drive this car too. Early on I avoided the whole Fourier
Transform view but I found that I was designing filters by formu-
la. As I said before, we hobbyists have time to ponder and I was
determined to break through the Fourier Transform barrier. I hope
to help you get through this barrier as well.

The first step in breaching the Fourier Transform barrier is to
simply accept a few realities.

First, just as with correlation, the Fourier Transform works on
blocks of data. Accumulating, processing and delivering these
blocks of data require a certain amount of logistical overhead in
the programming. These are simply facts of life.

The second reality: generally speaking, larger blocks of data
produce more precise results. This means that more precise results
require more memory for the blocks of data and longer delays
through your system. There are ways to reduce these delays but
the facts remain; you want better results you’re going to have to
wait.

The third reality: you can probably write the code to do the
Discrete Fourier Transform and it is a fascinating exercise I hearti-
ly recommend. But, you’ll probably want to use a software library
where someone spent lots of time making it as fast as possible.
Don’t get me wrong, there are many Fourier Transform applica-
tions which do not require blazing speed and I’ll show you a cou-
ple later on. For now, though, let’s just assume we have the appro-
priate software packages.

Now to simplify the discussion, I’d like to eliminate a few
variables. First, let’s assume all blocks of data are 100 samples
long. Further, let’s assume the CODEC sample rate is 100 Hz.
Once we’re comfortable with this simplified situation we can sim-
ply scale things. This is much like how one designs analog filters
for an “ =1” frequency and then scales up to the desired frequen-
cies.

To get things started we gather up 100 CODEC samples and
place them in an Input array we’ll call I[]. The Digital Fourier
Transform (DFT) then takes I[] and produces a second block of
data which is also 100 entries long. This second block of data is,
in effect, the “Spectrum” of the input block and we will call the
second array the “S[].” The first element in this array is the “DC”
value of the CODEC samples. The second element is the magni-
tude of 1 Hz in the signal. The third represents the magnitude of 2
Hz, the fourth 3 Hz, the fifth 4 Hz, etc. Importantly, the Spectrum
Array (S[]) contains both upper and lower sideband spectra but
let’s ignore that for the moment. Authors better than I can explain
these details. For now, let’s just think about the lower half of the
S[] and assume the upper half is always zero or we will MAKE it
zero.

But how does each element S[i] get generated? Well, it is gen-
erated using correlation. Yep. For each “i” in S[] we compute S[i]
= Correlation(I[],B(iHz)[]). Really, that is it. The DFT is just
bunch of correlations. All the math, all the pretty graphs, all the
shorthand descriptions, all the chapters on algorithms are descrip-
tions of this simple idea: the DFT is simply a convenient collec-
tion of correlations. Don’t be intimidated and don’t get lost. All
that math is there to help us write programs, not necessarily to
help us understand.

Unfortunately, the math does tell us there is one more compli-

50 · Summer 2010 The QRP Quarterly www.qrparci.org/

cation. If you think back to the very first correlation we did you’ll
remember that there was a point at which the correlation was zero
even though the input array A[] and the reference array B[] were
very similar, specifically when the two waveforms were 90
degrees out of phase. This was fine for our correlation filter but
represents a problem with the DFT. Surely the I[] contains a sig-
nal of frequency “i.” We will want S[i] to reflect that fact
REGARDLESS of the phase!

The DFT avoids this problem by performing the correlation
with both a sine wave and a cosine wave for each frequency. Then,
independent of the phase of the signal, the appropriate DFT bin
will not be zero. The DFT records the correlation for the cosine
and sine waves by making each S[] element a complex number.
The “real”part of the S[] element represents the correlation with
the cosine and the “imaginary” part is the correlation with the sine
wave. Now, just to keep things simple, we’ll ignore the fact that
the S[] elements are complex numbers. It is vastly important but
let’s just forget it for the time being.

Once we have the S[] we can process each element in that
array as we see fit. For example, if you want a really narrow filter
at, say, 6 Hz then you would simply zero out all S[] elements
EXCEPT 6. You have now implemented a very narrow filter.

Or consider that you might want to notch out a 24 Hz carrier
which is giving you trouble. Then you would simply set S[24] ele-
ment to zero. In C you would write “S[24]=0;.” Done.

For simple filters we need only need to scale each of the S[]
array elements. When doing just this scaling, we can think of each
S[i] having an associated weight or W[i]. Then we design our fil-
ter by assigning values to W[i]. To process S[] we simply say:

for (i=0;i<100;i=i+1)
Sp[i] = S[i] * W[i]; //compute a new array called Sp[]

We would do this so that a program could write the values of
W[] when the filter parameters changed. Then scaling S[] using
W[] could be done very quickly.

There are many more advanced things you can do with the S[]
array. I mention a few here just to pique your interest:

• You can convert frequencies. If you’d like to move the sig-
nal at 24 Hz down to 6 Hz you could simply write “S[6] =
S[24];”.

• You can listen to two frequencies at the same time by
ADDING the Spectrum elements together. To listen to 6 Hz
and 24 Hz translated down to 6 Hz you just write “S[6] =
S[6] + S[24];”.

• Notice that W[] is essentially a graphic equalizer.
• You can see how the typical spectrum display on commercial

rigs is easily implemented using the S[] array. And the
waterfall display is simply a different display program of the
S[] array.

• You can implement “automatic fine tuning” by examining
the S[] array and adjusting the frequency to make a chosen
frequency S[chosen] the maximum.

Now, yes, I’ve simplified things a bit, but you can see the pos-
sibilities. There are lots of refinements to be made in any DSP
approach I’ll describe here. These refinements can make tremen-

dous improvements, but they are only refinements. Once you get
the basic stuff you will have the context to read the literature and
understand all the refinements. Warning: “refining” can become
addictive.

OK. So once we process the S[] array as needed we have a
new array called Sp[]. We can’t send Sp[] out to the headphones
or speakers because the CODEC doesn’t understand frequencies,
it wants time samples. So we need to convert the Sp[] array back
into a bunch of CODEC samples. This is done by using the
“inverse Discrete Fourier Transform” or IDFT. Let’s call the out-
put of the IDFT the N[] array.

Now don’t think of the IDFT as anything magical either. Think
about an individual element in Sp[i]. If Sp[i] is big (say 1) then
there the signal contains a lot of the frequency associated with
Sp[i]. This means that N[] should contain a sine wave of fre-
quency i Hz. If Sp[i] is small then N[] should contain a small
amount of the associated sine wave. Remember, we had a way to
describe this sine wave array: B(iHz)[]. This means that N[] is
the sum of all the sine waves B(i)[] weighted by S[i]. In reality,
each element N[j] is the convolution of S[i]xB(i)[j]. Look closely
at that equation and try to decipher it. Said differently, “The IDFT
is just the weighted sum of a bunch of sine waves.”

Figure 1 shows the whole process from I[] to N[]. It is a little
involved. On the left I show an input signal I[] at the top and four
sine waves below it. Each one of these sine waves is correlated to
the input generating the 4 element vertical array S[]. I then mul-
tiply each S[i] with the associated W[i] to implement the filter.
Here I decided to implement a band pass filter which would pass
just 2 Hz and 3 Hz. Having created Sp[] I then show the weight-
ed sign waves on the right. Note that the top and bottom reference
sine waves are straight lines; I filtered them out, remember? Then
I add those sine waves together to get N[].

Now we have a complete path:

1) Take in a bunch of CODEC samples to make I[]
2) Perform the DFT on I[] to make S[]
3) Process S[] by weighting it using W[] to generate Sp[]
4) Perform the IDFT on Sp[] to create N[]
5) Deliver N[] to the CODEC.

Once you are comfortable with all this out you can start scal-
ing the frequencies. For example, we simplified things by sam-
pling things at 100 Hz. If our sample rate is really 16000 Hz then
the bandwidth represented by S[i] is really S[i*160]. More exact-
ly, in general the frequency in any S[i] is really
i*SampleRate/BlockSize.

And there is one more important fact I need to make. All along

Figure 1—Overview of the software filtering process.

www.qrparci.org/ The QRP Quarterly Summer 2010 · 51

I’ve been writing about the Discrete Fourier Transform but most
people don’t talk about the DFT. Why is this? Well, if you use a
block size which is a power of two then there is a really fast way
to compute the DFT and it is called the Fast Fourier Transform
(FFT). In general, the amount of time it takes to compute the DFT
is MxN where M is the length of the correlations and N is the
number of bins in the DFT. If M and N are the same size and a
power of two then the FFT can compute the DFT in NlogN time.
Please note though, the FFT is exactly equal to the DFT of the
same data.

Wrapping Up the Fundamentals
So let’s sum things up. Please remember that I’m talking infor-

mally here, all the nitty-gritty details are explained in countless
publications. We’re just trying to understand what is happening so
we can read the books already knowing the lay of the land.

We started out thinking about how to compare an incoming
signal to a reference signal and found that correlation could be
used to make that comparison. Further, we saw how that compar-
ison could be used to create a filter for a given frequency. Then we
saw how a bunch of these single frequency correlation filters
could be combined and a bandpass filter could be implemented.
We saw that the computation of bandpass filters was no more time
consuming than a filter for a single frequency because we could
build a filter kernel we called F[] which produced any band pass
we wanted.

Having understood how correlation could be used to compare
signals we then turned to the Discrete Fourier Transform. We saw
that the DFT was really just the result of performing a large num-
ber of correlations. The reference signals for the correlations are
evenly spaced harmonics of sine and cosine waves. We called
these correlations S[]. Having created all these S[i] elements we
saw how they could be manipulated and that this manipulation
was really taking place “in the frequency domain.” Having pro-
cessed S[] to create a new Sp[] we then saw how to convert our
signal back into the “time domain” array N[] by summing up a
bunch of weighted reference signals B(i)[] by using the IDFT.

A Weakness of the DFT (and Correlation as it turns out)
Up until this point all the signals we have been discussing

have been selected to deliver “perfect” results. Specifically, I have
chosen signals consisting of sine waves which were an even mul-
tiple of the sample period. In the DFT discussion we worked with
signals that were 1 Hz, 2 Hz, 3 Hz, etc. But real world signals are
not so cooperative. What happens when, say, we have a 1.25 Hz
signal? Where does a 1.25 Hz signal appear in the DFT? One
would hope that it would appear mostly in the 1 Hz bin and part-
ly in the 2 Hz bin and this is mostly true; the biggest values in S[]
will be in 1 Hz and 2 Hz.

Unfortunately, the complete answer is that the 1.25 Hz signal
will appear, to some extent, in ALL the DFT bins. This phe-
nomenon is called “Spectral Leakage” and is covered at length in
countless publications. I have tried to find an intuitive explanation
of this phenomenon but have yet to find one I like. I’ll describe
my best present thinking. Before looking at the solution though,
let’s look at the problem. Figure 2 shows what happens when I
design a filter ignoring the spectral leakage problem. Examine the
area around the upper frequency roll-off. Not very good, right?
There are ripples in the pass band and side lobes in the stop band.

One way I’ve come to think about these ripples and side lobes
is to consider them as simply “ringing” except here the ringing is
in the “frequency domain.” Consider the array W[] we used to
scale the S[] array in the Spectrum. For a low pass filter, this array
is a series of 1s followed by a series of zeros. If you think of this
as a normal signal and run it through a circuit, you would expect
some ringing as a result of the very fast falling edge. This ringing
is what we are seeing in the side lobes in Figure 2!

One way to eliminate ringing on signals is to low pass filter
them. Indeed, if I simply low pass filter W[] the side lobes will be
significantly reduced. Of course, when I low pass filter W[] I
expect the edges of the frequency response to slow down as well.
In other words, I expect the roll-off to be less steep. All this can
be seen in Figure 3.

The filtering of W[] is called Windowing and is the subject of
endless debates if not downright arguments. There are many dif-
ferent window functions and each one has advantages and disad-

Figure 2—Filter passband with sidelobes. Figure 3—Filter passband after windowing is applied.

52 · Summer 2010 The QRP Quarterly www.qrparci.org/

vantages. There is a general trend, though. The less you filter W[]
the faster the roll-off will be and the larger the side lobes will be.
On the other hand, the more you filter W[] the slower the roll-off
and the smaller the side lobes. For general-purpose use I use what
is called the “Hamming” window. How do I apply this window?

Well, as it turns out, most window functions are not applied to
the W[] array at all. Rather, they are applied to the F[] array being
used for the correlation filter. This is simply a matter of conve-
nience, after all, there is no real difference between the F[] array
and the W[] array. Indeed, later we’ll see how to convert between
the two. OK, so the windowing is done in the F[] array. Just how?
Well, in the case of the Hamming window the F[] array is multi-
plied by (0.54-0.46 cos(x)). Figure 4 shows this graphically for a
single frequency filter. Notice how the values of the final F[]
array (shown at the bottom) start small, grow and then shrink
again.

Figure 5 compares two filters, one with the Hamming filter
and one without. Both filters are exactly 1 DFT bin wide. The
wide trace with no significant side lobes is a single bin with the
Hamming window applied. The taller and narrower trace is an
unwindowed version of the filter. Notice the roll off is faster but
the side lobes are much larger in the unwindowed case.

Let me close this section with a couple of remarks. In this
description of correlation and DFTs, I have glossed over many
details some of which are critical. My goal was not to provide a
cookbook of how to use correlation and the DFT/IDFT pair.
Rather, I hope I have shown you that these technologies are not
mystical and can be understood intuitively with only a little guid-
ance. I hope that I have laid a foundation of understanding that
gets you over the initial hurdle of using this powerful technology.

Now let’s explore a few of the fundamental digital signal pro-
cessing techniques used in my SDR. It is time to show how some
of this stuff gets used in my SDR. Here are a few notes on various
problems I encountered and how I solved them.

The ejm Function
One of the very first subroutines I had to write was a fast ver-

sion of “sin” and “cos.” The dsPIC C library provides these func-

tions but they are designed as general purpose and precise func-
tions which return high precision numbers. These subroutines take
hundreds of microseconds or even milliseconds to complete;
much too long for real time DSP operation.

There are several ways to implement fast versions of these
functions with varying precision/speed tradeoffs. I ended up
choosing a simple table lookup scheme. My table is 1024 entries
long and does interpolation between the points. I call my subrou-
tine “ejm.” “ejm” takes a single Fractional argument which is the
angle and returns a Complex number. The precise code is a
straight forward exercise in programming and not shown here.
The following code is shown for clarification. (Take Note: This is
NOT functional code, I have left out details concerning the trans-
lation of Fractional to C language “floats.”)

// function taking one Fractional
// and returning Complex

Complex ejm(Fractional angle)
{

Complex rval;
rval.i = cos(PI*angle);
rval.q = –sin(PI*angle);
return(rval);

}

Note that because the “angle” argument is a Fractional it can
have values from (essentially) –1 through 1. Note also that this
means that we don’t need to worry about the angle ever being out-
side the range of –PI to PI. This eliminates any bounds checking
which might need to be performed.

This routine is used extensively throughout my code whenev-
er a sine or cosine wave is needed.

The Hilbert Transform
I chose to implement the Hilbert Transform using an FIR-like

construct. (FIRs are a method of implementing filters which, for

Figure 5—Comparable filters with and without windowing.
Figure 4—The Hamming window function.

www.qrparci.org/ The QRP Quarterly Summer 2010 · 53

the purposes of this discussion, need not be further described.)
Indeed, the only difference between a typical FIR filter and the
Hilbert Transform is the coefficients in the F[] array. The coeffi-
cients in the F[] array can be computed using the IDFT or they
can be computed in a closed form. I chose to compute the Hilbert
Transform coefficients using the equations found in EMFRD.

There are other ways to generate the Hilbert Transform. A lit-
erature search is worthwhile. There doesn’t seem to be any one
way which is significantly better than all the others so I didn’t pur-
sue their implementation.

As with normal FIR filters the Hilbert Transform benefits from
a windowing function applied to the F[] array. I use the
Blackman-Harris window when implementing the Hilbert
Transform.

General Purpose Filters
In the present incarnation of my SDR, I use correlation to

implement my general purpose filtering. To do so, I generate my
F[] array on the fly. I provide for three parameters in my user
interface: lower cut-off frequency, upper cut-off frequency, and
“filter length.” To generate my F[] array I use a technique called
“Windowed Sync.” The code was taken almost literally from
Reference 3. The algorithm is not very interesting but it is very
instructive to play with each of the parameters.

Of particular interest is the “filter length” parameter. As dis-
cussed above, better filters require longer block lengths. As one
shortens the F[] length the edges of the filter will get slower and
the stop band attenuation will get worse. Conversely, as one
increases the length the edges get steeper and the stop band atten-
uation gets better…. up to a point. In my SDR I found that when
increasing the block length past 250 points, my filters simply did
not improve. I’ll return to this topic shortly.

There is little doubt that there are algorithms that produce
“better” filters than the simple Windowed Sync—better in terms
of roll off, ripple, stop band attenuation, FIR filter length, etc.
However, the basic Windowed Sync produces very good results,
is easy to implement and provides a transparent technology suit-
able for experimentation.

Narrow Filters
In researching the topic of filtering, I came to understand why

my longer FIR filters did not produce better results. When doing
very long convolution, the F[] array element values get quite
small. I found this by looking closely at the F[] array values and
then the algorithm itself. The center of the algorithm in Reference
3 is an equation which has the form sin(ki)/i where i is the index
in the F[] array. This means that as the F[] array gets larger the i
gets larger and the “/i” piece of the equation gets me in trouble.

An additional piece of the puzzle comes from the windowing
function. Essentially all windowing functions will have this prob-
lem; it is not peculiar to mine. The key point of the windowing
function is the term that looks like “1–cos(x)” so when x is getting
close to the ends of the F[] array, the “1–cos()” term gets very
close to zero.

The combination of these two features makes the F[] array
vanish below 16 bit resolution. I thought long and hard about how
to get around this problem. Ultimately, I found a technology
called “Sliding DFT” with frequency domain windowing. As it

turns out, I did not implement the Sliding DFT exactly. I have seen
my modification called the “Running DFT,” a term that is a little
less formal so I’ll go with that name. Let’s start with how to
implement the Running DFT.

The Running DFT allows me to compute the value of any sin-
gle bin in the DFT one CODEC sample at a time. As with the fil-
ters we’ve discussed earlier, the basic technique is essentially a
running correlation of the incoming data with a reference signal.
The first step is to implement the reference signal. Let’s continue
our discussion assuming I would like to correlate 1024 samples of
the incoming signal.

Before delving into the code there are a couple of important
concepts that need pointing out. First, I need to avoid working
with small numbers whenever possible and I certainly don’t want
to do any division (too time consuming). Second, I want the cal-
culation to be “stable.” It is very important that intermediate num-
bers not grow. As a result, I need to worry about when precision
is being lost. Now, on with the discussion…

Remember that the correlation is the sum of the product of the
incoming signal and the reference signal. Each time a new
CODEC sample arrives I need to compute the product and add it
to the sum. In addition, I need to subtract out the contribution of
the 1024th oldest input. For this discussion I use a ring to keep the
1024 entries; I won’t show the ring code again.

In order to allow me to write more concise programs (and
therefore programs with fewer bugs) I’m going to keep the
“sums” as BigComplex numbers; see the declaration below. Note
that I already introduced two functions for manipulating Complex
numbers: CxC to multiply and CpC to add. These were necessary
because C does not have a “native” Complex number type. For the
purposes of the code below, however, I’m going to use * and + to
indicate multiplication and addition. The real code would need to
use CxC and CpC.

Here is the basic code for implementing a Sliding DFT for bin
number “i”:

typedef struct {long i; long q;} BigComplex;
BigComplex aSumi;
Complex tempC;

oldestI = inputRing[ringIndex];
inputRing[ringIndex] = I;

tempC = ejm(i*ringIndex/1024);
aSumi = aSumi + tempC * I; //correlate and add

in new.
aSumi = aSumi - tempC * oldestI; //take out old.

There are a couple of important details I slipped into the above
code. First, the reference signals make complete and exact cycles
every 1024 samples. The inputRing also cycles every 1024 cycles.
Thus, I guarantee that the reference signals have EXACTLY the
same value when a CODEC sample is “added in” and when it is
“subtracted out” 1024 cycles later. Second, the running sums are
32 bits long so there is no chance of an overflow. The maximum
value which might be in “aSum”is only 512. Third, notice that I
add in and subtract out values directly to the sum. This is because
when using Fractionals there is no absolute assurance that

54 · Summer 2010 The QRP Quarterly www.qrparci.org/

“a(b+c)” is exactly the same as “ab + ac.” Rounding can make a
difference.

Believe it or not, that is all one needs to compute the running
DFT. However, we still need to apply a windowing function or
there will be significant side lobes. Let’s explore how to apply a
window in the frequency domain using the Hamming Window as
an example. Remember that the Hamming Window equation was
0.54–0.46cos(x).

This Hamming Window equation is written “in the time
domain,” and we want to perform the windowing function “in the
frequency domain.” How do we convert from “time” to “frequen-
cy”? Yep, we apply the DFT to the equation 0.54-0.46cos(x) win-
dow. A little bit of examination of the equation is quite telling. The
first term of the equation is 0.54. This represents a DC value and
we would expect the DFT of this equation to have a first bin S[]
equal to 0.54. Second, the “cos” part cycles exactly once during
the window and so we would expect the second bin s[1] to be of
value 0.46. Well, we are half right. As it turns out, the DFT of the
Hamming window has exactly 3 non-zero bins. S[0] is 0.54 as we
expect but the .46 part is divided equally between the S[1] and S[-
1] bins; each is –0.23. Generally speaking, real cosine signals
always have spectra which are symmetric around 0. This is some-
thing you’ll see repeatedly.

Now don’t get flustered by that “-1,” it is just math and it will
go away in just a moment. We need to shift this window function
up to the filter frequency of interest, here bin “i.” The final W[]
array will have three nonzero bins: W[i–1]=–0.23, W[i]=0.54 and
W[i+1] is –0.23. Done. We’ve applied the Hamming Window to
our single bin DFT. Unfortunately, this means we need to compute
the running DFT of three bins rather than just one but that is a sim-
ple extension of the above code.

We have now computed the Sp[i-1],Sp[i] & Sp[i+1] bins but
we aren’t done, we need to compute the running IDFT.
Fortunately, this is pretty easy too. To compute the running IDFT
of a single bin we need to simply multiply the Sp[i] bins by the
appropriate reference signals. I will again use * and + so as to
improve readability, but the real code would need to use CxC and
CpC as before. Also, please take note that the angle arguments to
ejm are negated; the IDFT reference signals run in the reverse
direction of the DFT references.

N = –0.23 * ejm(–(i–1)*ringIndex/1024);
N = N + 0.54 * ejm(–i*ringIndex/1024);
N = N – 0.23 * ejm(–(i+1)*ringIndex/1024);

The final step is to scale the final value N so that it isn’t too
big. It turns out that any single DFT bin can reach the value equal
to the length. In this case that is 1024. Thus, the final N above can
be as large as 1024 (1024*0.54 + 1024*0.46). Fortunately, this is
a power of two and a simple shift wraps up the computation. N
can now be handed to the CODEC for output.

The running DFT allows you to build very tight filters without
doing any division (well, almost) and without losing any preci-
sion. If one makes a few optimizations the above code can run
VERY fast. The key optimization is to replace a call to ejm with a
direct table lookup. This is possible because it turns out that there
is no need for interpolation if the table is large enough. Other opti-
mizations are performed in the final version of the code but these

optimizations tend to make the code less readable and so are not
shown here.

Figure 6 shows a filter for 600 Hz using the Sliding DFT. This
filter rolls off over 43 dB in just 50 Hz. Using a slightly more
aggressive Window (Blackman-Harris) this roll-off can be 73 dB
in the same 50 Hz!

One final note: if you were particularly observant you would
have noticed that this filter uses a complex input I. When this is
done then the Running DFT does sideband selection in addition to
filtering. Thus, when using the Running DFT as a filter as I do
here, there is no need for the Hilbert Transform.

Arbitrary Filters
We spoke at length about how to implement arbitrary filters

using both the DFT and correlation. It was fairly simple to see
how to implement funky filters in the DFT, we simply had to scale
each element of the S[] array. Remember that we used a second
array W[] to express these scale factors. Then we would perform
a DFT, scale the spectrum using W[] and then perform an IDFT.
So designing our filter in the frequency domain was pretty easy:
just assign the appropriate values to W[].

However, in discussing correlation I conveniently glossed
over how to create an arbitrary filter array F[]. As it turns out, you
already have all the tools necessary. Remember that we wanted to
create F[] by adding a bunch of reference signals together? Well,
that is exactly what the IDFT does, right? So to create F[] we sim-
ply perform the IDFT of the W[] array and, voila, an F[] suitable
for use in Convolution! But don’t forget to apply a window!

There are, of course, many other ways to generate the F[]
array. Some of these methods generate better results; faster edges,
shorter F[] arrays, flatter pass bands or deeper stop bands. Most
of these tools cost money and are largely opaque. A professional
engineer would benefit from their use. The vast majority of hob-
byists will find this simple approach more than adequate.

Using the FFT in the Data Path
Think back about the description of the DFT and IDFT. In that

Figure 6—A 600 Hz filter using the sliding DFT process.

www.qrparci.org/ The QRP Quarterly Summer 2010 · 55

section I described a way to perform filtering completely in the
frequency domain. The basic approach was described as I[] –>
DFT –> S[] –> IDFT –> N[]; input converted to spectrum, pro-
cessed and then converted back to output. This approach to signal
processing is called “Fast Convolution” and there are some com-
plications involved. A little research is in order if you are interest-
ed.

I have tried numerous times to make this work and have failed
each and every time. I have coded the approach independently
several times using several different algorithms and always failed
to achieve acceptable performance; specifically, every attempt has
produced a low frequency “beat” tone that was related to the size
of the input ring. I have tried to understand why this has not
worked and would appreciate any insight anyone might offer.

My best understanding of this problem right now is that 16 bit,
fixed point arithmetic simply loses too much precision during the
calculation of the FFT and IFFT. I am still intrigued by this
approach and keep trying. The next effort will be to code up my
own highly optimized version of the FFT and see what happens
when I increase the precision of the arithmetic.

I would point out that I don’t believe that there is really that
much to be gained by using this approach in my radio. For basic
filters either correlation or the Running DFT can perform ade-
quately and are much easier to program and maintain.

Summary
With this portion of my article, I have completed the descrip-

tion of the SDR’s CW and SSB receiver. I have not worked on a
SSB exciter as my Class E power amplifier will not support SSB.

My Software Defined Radio project has been and continues to
be a grand adventure. It has afforded me countless hours of edu-
cation, entertainment, distraction, frustration and excitement…

and I treasure every minute. In this series of articles, I have dis-
cussed a variety of obstacles I have encountered and solutions I
have employed. Most of these obstacles were typical problems
with typical solutions. When a problem was familiar I endeavored
to use the “standard” solution. Other problems were new to me
and required significant research before the problem was totally
understood and a solution was selected.

My entire design database; schematics, pc board layout, parts
list and software will be provided on the QRP Quarterly Web site
as well as my own which is www.ae6ty.com. This will allow you
to see exactly how I solved (or ignored or overlooked) a problem.

Through this article, I hope I have piqued your interest in
building and perhaps even designing your own equipment. At the
very least, I hope I have given you a glimpse of some of the tech-
niques and capabilities of the emerging technology called
Software Defined Radio.

In the next issue of QRP Quarterly we’ll shift gears to a more
hardware oriented portion of the project; the output power ampli-
fier. That article, Part IV of the series, will explore the design
methodology and computer tools used to implement a single band,
5 watt, class E amplifier.

—73/72, Ward, AE6TY

Bibliography
1. Lyons, Richard G., Understanding Digital Signal

Processing, Second Edition, Prentice Hall, Upper Saddle River,
New Jersey 2004

2. Hayward, Campbell, Larkin, Experimental Methods in RF
Design, The American Radio Relay League, 2003

3. Smith, Steven W., Digital Signal Processing A Practical
Guide for Engineers and Scientists, Newnes, 2003

●●

Cleaning Up NiCd Battery Leakage
Gary McCaughey, W2UX posted this

on qrp-l@qth.net—
A nice StreamLite flash light with a

nickel cadmium (NiCd) battery stick
inside was just given to me. I opened it
and there is white dust from the battery
inside. You can see a spot where there is
some sort of corrosion. What can you use
to clean this stuff? It is not like a lead acid
battery that you can clean up with baking
soda. Also, this stuff is considered toxic,
right?

This reply came from Brad Thompson,
AA1IP—

If I recall correctly, the white residue
is sodium hydroxide electrolyte (an alkali
or base), which you can remove with a

discarded toothbrush or a cotton swab
dipped in a weak acid such as vinegar.
Once the residue is removed, swab the
area with distilled water (or tap water) to
remove any chemical residue and allow it
to dry. Inspect for damage—if the battery
contact region isn’t too badly damaged,
use as is. Otherwise, you may have to
improvise a replacement contact.

DE WA8MCQ—
I checked Wikipedia, the online ency-

clopedia, and it indicated that the elec-
trolyte is potassium hydroxide (KOH).
Some other web sites indicated the same
thing. To be safe I decided to check the
web site of Saft, a company that actually
makes this sort of thing. (Not exactly a
household term in this country, it’s a large

French company that has been around for
a very long time.) It says, “Nickel-cadmi-
um cells have an anode (negative) in cad-
mium hydroxide and a cathode (positive)
in nickel hydroxide, immersed in an alka-
line solution (electrolyte) comprising
potassium, sodium and lithium hydrox-
ides.”

I’ve had good luck cleaning up NiCd
residue with vinegar, as Brad suggests. It
also works well if you have a leaking
alkaline battery. If you have a battery
leakage situation and can’t tell what type
it was (such as someone handing you a
device with the leaking batteries already
gone), try both vinegar and a bit of baking
soda in water. One or the other should
take it right off.

●●

One More Note from WA8MCQ’s Idea Exchange...

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

